11 research outputs found

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    The AXIOM platform for next-generation cyber physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (author's final draft

    The AXIOM Project: IoT on Heterogeneous Embedded Platforms

    Get PDF
    The AXIOM project aims at providing an environment for Cyber-Physical Systems. Smart Video Surveillance targets public environments, involving real-time face detection in crowds. Smart Home Living targets home environments and access control. These applications are used as experimental use cases for the AXIOM platform, currently based on the Xilinx Zynq-7000 SoCs. We have integrated the Xilinx Vivado HLS tool for the FPGA support within the OmpSs programming model, to enable OpenMP-like programming in the FPGA. This paper presents the programming environment, and the evaluation of the most computationally expensive parts of the target applications

    The AXIOM platform for next-generation cyber physical systems

    No full text
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer Reviewe

    The AXIOM project: IoT on heterogeneous embedded platforms

    No full text
    Summarization: Editor’s notes: IoT constitutes an important area of cyber–physical systems, whose design and programming involve interactions between multiple abstraction layers. This article describes a new IoT node, its hardware architecture, programming environment, and two application scenarios where it may be used. —Samarjit Chakraborty, University of North Carolina at Chapel HillPresented on: IEEE Design & Tes

    PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability

    Get PDF
    Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and adolescent young adults, driven primarily by the chimeric transcription factor PAX3-FOXO1. The mechanisms by which PAX3-FOXO1 dysregulates chromatin are unknown. We find PAX3-FOXO1 reprograms the cis-regulatory landscape by inducing de novo super enhancers. PAX3-FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3-FOXO1-occupied super enhancers. Furthermore, PAX3-FOXO1 recruits and requires the BET bromodomain protein BRD4 to function at super enhancers, resulting in a complete dependence on BRD4 and a significant susceptibility to BRD inhibition. These results yield insights into the epigenetic functions of PAX3-FOXO1 and reveal a specific vulnerability that can be exploited for precision therapy.Significance: PAX3-FOXO1 drives pediatric fusion-positive rhabdomyosarcoma, and its chromatin-level functions are critical to understanding its oncogenic activity. We find that PAX3-FOXO1 establishes a myoblastic super enhancer landscape and creates a profound subtype-unique dependence on BET bromodomains, the inhibition of which ablates PAX3-FOXO1 function, providing a mechanistic rationale for exploring BET inhibitors for patients bearing PAX-fusion rhabdomyosarcoma

    The AXIOM software layers

    No full text
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer Reviewe
    corecore